H(2)-CO(2)-Dependent Anaerobic O-Demethylation Activity in Subsurface Sediments and by an Isolated Bacterium

Appl Environ Microbiol. 1993 May;59(5):1325-31. doi: 10.1128/aem.59.5.1325-1331.1993.

Abstract

The ability of microorganisms in sediments from the Atlantic Coastal Plain to biodegrade methoxylated aromatic compounds was examined. O-demethylation activity was detected in deep (121- and 406-m) sediments, as well as in the surface soil. A syringate-demethylating consortium, containing at least three types of bacteria, was enriched from a deep-sediment sample in a medium containing syringate as the sole organic carbon source and with a N(2)-CO(2) atmosphere. An isolate which demethylated syringate was obtained from the enrichment on an agar medium incubated under a H(2)-CO(2) but not a N(2)-CO(2) or N(2) atmosphere. O demethylation of syringate of this isolate was dependent on the presence of both H(2) and CO(2) in the gas phase. The metabolism of syringate occurred in a sequential manner: methylgallate accumulated transiently before it was converted to gallate. Mass balance analysis suggests that the stoichiometry of the reaction in this isolate proceeds in accordance with the following generalized equation: C(7)H(3)O(3)(OCH(3))(n) + nHCO(3) + nH(2) --> C(7)H(3)O(3)(OH)(n) + nCH(3)COO + nH(2)O.