Send to

Choose Destination
See comment in PubMed Commons below
Appl Environ Microbiol. 1983 Jan;45(1):187-92.

Sulfate reducers can outcompete methanogens at freshwater sulfate concentrations.

Author information

  • 1Kellogg Biological Station, Michigan State University, Hickory Corners, Michigan 49060, and Department of Microbiology and Public Health, Michigan State University, East Lansing, Michigan 48824.


Acetate and hydrogen metabolism by sulfate reducers and methanogens in the profundal sediments of an oligotrophic lake were examined. Inhibition of sulfate reduction with molybdate stimulated methane production from both hydrogen and acetate. Molybdate did not stimulate methane production in sediments that were preincubated to deplete the sulfate pool. Sulfate reduction accounted for 30 to 81% of the total of terminal metabolism proceeding through sulfate reduction and methane production in Eckman grab samples of surface sediments. The ability of sulfate reducers to effectively compete with methanogens for acetate was related to the sulfate reducers' lower half-saturation constant for acetate metabolism at in situ sulfate concentrations. Processes other than sulfate reduction and methanogenesis consumed hydrogen at elevated hydrogen partial pressures and prevented a kinetic analysis of hydrogen uptake by sulfate reducers and methanogens. The demonstration that sulfate reducers can successfully compete with methanogens for hydrogen and acetate in sediments at in situ sulfate concentrations of 60 to 105 muM extends the known range of sediment habitats in which sulfate reduction can be a dominant terminal process.

PubMed Commons home

PubMed Commons

How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for HighWire Icon for PubMed Central
    Loading ...
    Write to the Help Desk