Send to:

Choose Destination
See comment in PubMed Commons below
Appl Environ Microbiol. 1981 Jul;42(1):5-11.

Volatile Fatty acids and hydrogen as substrates for sulfate-reducing bacteria in anaerobic marine sediment.

Author information

  • 1Institute of Ecology and Genetics, University of Aarhus, DK-8000 Aarhus C, Denmark.


The addition of 20 mM MoO(4) (molybdate) to a reduced marine sediment completely inhibited the SO(4) reduction activity by about 50 nmol g h (wet sediment). Acetate accumulated at a constant rate of about 25 nmol g h immediately after MoO(4) addition and gave a measure of the preceding utilization rate of acetate by the SO(4)-reducing bacteria. Similarly, propionate and butyrate (including isobutyrate) accumulated at constant rates of 3 to 7 and 2 to 4 nmol g h, respectively. The rate of H(2) accumulation was variable, and a range of 0 to 16 nmol g h was recorded. An immediate increase of the methanogenic activity by 2 to 3 nmol g h was apparently due to a release of the competition for H(2) by the absence of SO(4) reduction. If propionate and butyrate were completely oxidized by the SO(4)-reducing bacteria, the stoichiometry of the reactions would indicate that H(2), acetate, propionate, and butyrate account for 5 to 10, 40 to 50, 10 to 20, and 10 to 20%, respectively, of the electron donors for the SO(4)-reducing bacteria. If the oxidations were incomplete, however, the contributions by propionate and butyrate would only be 5 to 10% each, and the acetate could account for as much as two-thirds of the SO(4) reduction. The presence of MoO(4) seemed not to affect the fermentative and methanogenic activities; an MoO(4) inhibition technique seems promising in the search for the natural substrates of SO(4) reduction in sediments.

Free PMC Article
PubMed Commons home

PubMed Commons

How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for HighWire Icon for PubMed Central
    Loading ...
    Write to the Help Desk