Send to

Choose Destination
See comment in PubMed Commons below
Stat Med. 2006 Oct 15;25(19):3348-65.

Operating characteristics of sample size re-estimation with futility stopping based on conditional power.

Author information

  • 1The Biostatistics Center, Department of Epidemiology and Biostatistics and Statistics, The George Washington University, Rockville, MD 20852, USA.


Various methods have been described for re-estimating the final sample size in a clinical trial based on an interim assessment of the treatment effect. Many re-weight the observations after re-sizing so as to control the pursuant inflation in the type I error probability alpha. Lan and Trost (Estimation of parameters and sample size re-estimation. Proceedings of the American Statistical Association Biopharmaceutical Section 1997; 48-51) proposed a simple procedure based on conditional power calculated under the current trend in the data (CPT). The study is terminated for futility if CPT < or = CL, continued unchanged if CPT > or = CU, or re-sized by a factor m to yield CPT = CU if CL < CPT < CU, where CL and CU are pre-specified probability levels. The overall level alpha can be preserved since the reduction due to stopping for futility can balance the inflation due to sample size re-estimation, thus permitting any form of final analysis with no re-weighting. Herein the statistical properties of this approach are described including an evaluation of the probabilities of stopping for futility or re-sizing, the distribution of the re-sizing factor m, and the unconditional type I and II error probabilities alpha and beta. Since futility stopping does not allow a type I error but commits a type II error, then as the probability of stopping for futility increases, alpha decreases and beta increases. An iterative procedure is described for choice of the critical test value and the futility stopping boundary so as to ensure that specified alpha and beta are obtained. However, inflation in beta is controlled by reducing the probability of futility stopping, that in turn dramatically increases the possible re-sizing factor m. The procedure is also generalized to limit the maximum sample size inflation factor, such as at m max = 4. However, doing so then allows for a non-trivial fraction of studies to be re-sized at this level that still have low conditional power. These properties also apply to other methods for sample size re-estimation with a provision for stopping for futility. Sample size re-estimation procedures should be used with caution and the impact on the overall type II error probability should be assessed.

Copyright 2006 John Wiley & Sons, Ltd.

[PubMed - indexed for MEDLINE]
PubMed Commons home

PubMed Commons

How to join PubMed Commons

    Supplemental Content

    Loading ...
    Write to the Help Desk