Send to:

Choose Destination
See comment in PubMed Commons below
J Appl Physiol (1985). 2006 Apr;100(4):1230-7. Epub 2005 Dec 8.

Acute vibration increases alpha2C-adrenergic smooth muscle constriction and alters thermosensitivity of cutaneous arteries.

Author information

  • 1National Institute of Occupational Safety and Health, Health Effects Laboratory Division, Engineering and Control Technology Branch, Morgantown, West Virginia, USA.


The vascular symptoms of hand-arm vibration syndrome, including cold-induced vasospasm, are in part mediated by increased sensitivity of cutaneous arteries to sympathetic stimulation. The goal of the present study was to use a rat tail model to analyze the effects of vibration on vascular function and alpha-adrenoceptor (AR) responsiveness. Rats were exposed to a single period of vibration (4 h, 125 Hz, constant acceleration 49 m/s2 root mean square). The physical or biodynamic response of the tail demonstrated increased transmissibility or resonance at this frequency, similar to that observed during vibration of human fingers. Morphological analysis demonstrated that vibration did not appear to cause structural injury to vascular cells. In vitro analysis of vascular function demonstrated that constriction to the alpha1-AR agonist phenylephrine was similar in vibrated and control arteries. In contrast, constriction to the alpha2-AR agonist UK14304 was increased in vibrated compared with control arteries, both in endothelium-containing or endothelium-denuded arteries. The alpha2C-AR antagonist MK912 (3 x 10(-10) M) inhibited constriction to UK14304 in vibrated but not control arteries, reversing the vibration-induced increase in alpha2-AR activity. Moderate cooling (to 28 degrees C) increased constriction to the alpha2-AR agonist in control and vibrated arteries, but the magnitude of the amplification was less in vibrated compared with control arteries. Endothelium-dependent relaxation to acetylcholine was similar in control and vibrated arteries. Based on these results, we conclude that a single exposure to vibration caused a persistent increase in alpha2C-AR-mediated vasoconstriction, which may contribute to the pathogenesis of vibration-induced vascular disease.

[PubMed - indexed for MEDLINE]
Free full text
PubMed Commons home

PubMed Commons

How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for HighWire
    Loading ...
    Write to the Help Desk