Send to:

Choose Destination
See comment in PubMed Commons below
Proc Natl Acad Sci U S A. 2005 Dec 20;102(51):18584-9. Epub 2005 Dec 8.

Posttranslational conversion of L-serines to D-alanines is vital for optimal production and activity of the lantibiotic lacticin 3147.

Author information

  • 1Department of Microbiology, University College Cork, Cork, Ireland.


As a general rule, ribosomally synthesized polypeptides contain amino acids only in the L-isoform in an order dictated by the coding DNA/RNA. Two of a total of only four examples of L to D conversions in prokaryotic systems occur in posttranslationally modified antimicrobial peptides called lantibiotics. In both examples (lactocin S and lacticin 3147), ribosomally encoded L-serines are enzymatically converted to D-alanines, giving rise to an apparent mistranslation of serine codons to alanine residues. It has been suggested that this conversion results from a two-step reaction initiated by a lantibiotic synthetase converting the gene-encoded L-serine to dehydroalanine (dha). By using lacticin 3147 as a model system, we report the identification of an enzyme, LtnJ, that is responsible for the conversion of dha to D-alanine. Deletion of this enzyme results in the residues remaining as dha intermediates, leading to a dramatic reduction in the antimicrobial activity of the producing strain. The importance of the chirality of the three D-alanines present in lacticin 3147 was confirmed when these residues were systematically substituted by L-alanines. In addition, substitution with L-threonine (ultimately modified to dehydrobutyrine), glycine, or L-valine also resulted in diminished peptide production and/or relative activity, the extent of which depended on the chirality of the newly incorporated amino acid(s).

[PubMed - indexed for MEDLINE]
Free PMC Article
PubMed Commons home

PubMed Commons

How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for HighWire Icon for PubMed Central
    Loading ...
    Write to the Help Desk