Format

Send to

Choose Destination
See comment in PubMed Commons below
J Exp Biol. 2005 Dec;208(Pt 24):4561-75.

Lactate--a signal coordinating cell and systemic function.

Author information

  • 1Department of Sport and Exercise Sciences, Chelsea School Research Centre, Welkin Performance Laboratories, Eastbourne, BN20 7SP, UK. a.philp@brighton.ac.uk

Abstract

Since its first documented observation in exhausted animal muscle in the early 19th century, the role of lactate (lactic acid) has fascinated muscle physiologists and biochemists. Initial interpretation was that lactate appeared as a waste product and was responsible in some way for exhaustion during exercise. Recent evidence, and new lines of investigation, now place lactate as an active metabolite, capable of moving between cells, tissues and organs, where it may be oxidised as a fuel or reconverted to form pyruvate or glucose. The questions now to be asked concern the effects of lactate at the systemic and cellular level on metabolic processes. Does lactate act as a metabolic signal to specific tissues, becoming a metabolite pseudo-hormone? Does lactate have a role in whole-body coordination of sympathetic/parasympathetic nerve system control? And, finally, does lactate play a role in maintaining muscle excitability during intense muscle contraction? The concept of lactate acting as a signalling compound is a relatively new hypothesis stemming from a combination of comparative, cell and whole-organism investigations. It has been clearly demonstrated that lactate is capable of entering cells via the monocarboxylate transporter (MCT) protein shuttle system and that conversion of lactate to and from pyruvate is governed by specific lactate dehydrogenase isoforms, thereby forming a highly adaptable metabolic intermediate system. This review is structured in three sections, the first covering pertinent topics in lactate's history that led to the model of lactate as a waste product. The second section will discuss the potential of lactate as a signalling compound, and the third section will identify ways in which such a hypothesis might be investigated. In examining the history of lactate research, it appears that periods have occurred when advances in scientific techniques allowed investigation of this metabolite to expand. Similar to developments made first in the 1920s and then in the 1980s, contemporary advances in stable isotope, gene microarray and RNA interference technologies may allow the next stage of understanding of the role of this compound, so that, finally, the fundamental questions of lactate's role in whole-body and localised muscle function may be answered.

[PubMed - indexed for MEDLINE]
Free full text
PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for HighWire
    Loading ...
    Write to the Help Desk