Display Settings:

Format

Send to:

Choose Destination
See comment in PubMed Commons below
Mol Biol Cell. 2006 Feb;17(2):834-50. Epub 2005 Nov 30.

Inositol deacylation by Bst1p is required for the quality control of glycosylphosphatidylinositol-anchored proteins.

Author information

  • 1Research Center for Glycoscience, National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba, Ibaraki 305-8566, Japan.

Abstract

Misfolded proteins are recognized in the endoplasmic reticulum (ER), transported back to the cytosol, and degraded by the proteasome. A number of proteins are processed and modified by a glycosylphosphatidylinositol (GPI) anchor in the ER, but the quality control mechanisms of GPI-anchored proteins remain unclear. Here, we report on the quality control mechanism of misfolded GPI-anchored proteins. We have constructed a mutant form of the beta-1,3-glucanosyltransferase Gas1p (Gas1*p) as a model misfolded GPI-anchored protein. Gas1*p was modified with a GPI anchor but retained in the ER and was degraded rapidly via the proteasome. Disruption of BST1, which encodes GPI inositol deacylase, caused a delay in the degradation of Gas1*p. This delay was because of an effect on the deacylation activity of Bst1p. Disruption of genes involved in GPI-anchored protein concentration and N-glycan processing caused different effects on the degradation of Gas1*p and a soluble misfolded version of carboxypeptidase Y. Furthermore, Gas1*p associated with both Bst1p and BiP/Kar2p, a molecular chaperone, in vivo. Our data suggest that GPI inositol deacylation plays important roles in the quality control and ER-associated degradation of GPI-anchored proteins.

PMID:
16319176
[PubMed - indexed for MEDLINE]
PMCID:
PMC1356593
Free PMC Article
PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Icon for HighWire Icon for PubMed Central
    Loading ...
    Write to the Help Desk