Send to:

Choose Destination
See comment in PubMed Commons below
Appl Opt. 2005 Nov 20;44(33):7106-11.

Absorption characteristic and nonvolatile holographic recording in LiNbO3:Cr:Cu crystals.

Author information

  • 1Shanghai Institute of Optics and Fine Mechanics, Graduate School of the Chinese Academy of Sciences, Shanghai 201800, China.


The absorption characteristic of lithium niobate crystals doped with chromium and copper (Cr and Cu) is investigated. We find that there are two apparent absorption bands for LiNbO3:Cr:Cu crystal doped with 0.14 wt.% Cr2O3 and 0.011 wt.% CuO; one is around 480 nm, and the other is around 660 nm. With a decrease in the doping composition of Cr and an increase in the doping composition of Cu, no apparent absorption band in the shorter wavelength range exists. The higher the doping level of Cr, the larger the absorbance around 660 nm. Although a 633 nm red light is located in the absorption band around 660 nm, the absorption at 633 nm does not help the photorefractive process; i.e., unlike other doubly doped crystals, for example, LiNbO3:Fe:Mn crystal, a nonvolatile holographic recording can be realized by a 633 nm red light as the recording light and a 390 nm UV light as the sensitizing light. For LiNbO3:Cr:Cu crystals, by changing the recording light from a 633 nm red light to a 514 nm green light, sensitizing with a 390 nm UV light and a 488 nm blue light, respectively, a nonvolatile holographic recording can be realized. Doping the appropriate Cr (for example, NCr = 2.795 x 10(25) m(-3) and NCr/NCu = 1) benefits the improvement of holographic recording properties.

PubMed Commons home

PubMed Commons

How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for Optical Society of America
    Loading ...
    Write to the Help Desk