Display Settings:

Format

Send to:

Choose Destination
We are sorry, but NCBI web applications do not support your browser and may not function properly. More information
J Nutr. 2005 Dec;135(12):2857-61.

Isomalto-oligosaccharides polarize Th1-like responses in intestinal and systemic immunity in mice.

Author information

  • 1Division of Host Defense, Medical Institute of Bioregulation, Kyushu University, Higashi-ku, Fukuoka 812-8582, Japan. hiroyuki_mizubuchi@showa-sangyo.jp

Abstract

Isomalto-oligosaccharides (IMO) belong to a group of prebiotics that significantly increase the number of protective gut microflora. In the present study, we investigated the effects of IMO on intestinal and systemic immunity in mice. When mice were fed a diet supplemented with 20% IMO for 4 wk, the number of lactobacilli and the levels of IgA in feces were greater than those of mice fed the control diet (P < 0.05). Interferon-gamma (IFN-gamma) production by intestinal intraepithelial lymphocytes (i-IEL) in response to T-cell receptor (TCR) triggering was greater in mice fed IMO than in controls (P < 0.05), indicating T helper-1 (Th1) polarization of intestinal immunity by IMO. The proportion of natural killer (NK) T cells in the liver mononuclear cells (MNC), and the production of IFN-gamma by the liver MNC in response to TCR triggering were greater in mice fed IMO than in controls (P < 0.05), suggesting that the Th1/Th2 balance was shifted toward the Th1 lineage by IMO in systemic immunity. Furthermore, the proportion and activity of NK cells were greater in the spleens of the mice fed IMO than in the controls. Dietary IMO protected the mice from gamma-irradiation-induced lethality, accompanied by an inhibition of the translocation of Enterobacteriaceae. Notably, when mouse macrophage-like J774.1 cells were cultured with Lactobacillus gasseri in the presence of IMO, interleukin (IL)-12 production was greater than in the absence of IMO. These results suggest that IMO, in synergy with lactobacilli, upregulate the Th1 response and beneficially modulate host defense.

PMID:
16317132
[PubMed - indexed for MEDLINE]
Free full text
PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Icon for HighWire
    Loading ...
    Write to the Help Desk