Display Settings:

Format

Send to:

Choose Destination
We are sorry, but NCBI web applications do not support your browser and may not function properly. More information
Environ Microbiol. 2005 Dec;7(12):1868-82.

Bacterial degradation of xenobiotic compounds: evolution and distribution of novel enzyme activities.

Author information

  • 1Biochemical Laboratory, Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, Nijenborgh 4, 9747 AG Groningen, the Netherlands. d.b.janssen@rug.nl

Abstract

Bacterial dehalogenases catalyse the cleavage of carbon-halogen bonds, which is a key step in aerobic mineralization pathways of many halogenated compounds that occur as environmental pollutants. There is a broad range of dehalogenases, which can be classified in different protein superfamilies and have fundamentally different catalytic mechanisms. Identical dehalogenases have repeatedly been detected in organisms that were isolated at different geographical locations, indicating that only a restricted number of sequences are used for a certain dehalogenation reaction in organohalogen-utilizing organisms. At the same time, massive random sequencing of environmental DNA, and microbial genome sequencing projects have shown that there is a large diversity of dehalogenase sequences that is not employed by known catabolic pathways. The corresponding proteins may have novel functions and selectivities that could be valuable for biotransformations in the future. Apparently, traditional enrichment and metagenome approaches explore different segments of sequence space. This is also observed with alkane hydroxylases, a category of proteins that can be detected on basis of conserved sequence motifs and for which a large number of sequences has been found in isolated bacterial cultures and genomic databases. It is likely that ongoing genetic adaptation, with the recruitment of silent sequences into functional catabolic routes and evolution of substrate range by mutations in structural genes, will further enhance the catabolic potential of bacteria toward synthetic organohalogens and ultimately contribute to cleansing the environment of these toxic and recalcitrant chemicals.

PMID:
16309386
[PubMed - indexed for MEDLINE]
PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Icon for Blackwell Publishing
    Loading ...
    Write to the Help Desk