Format

Send to

Choose Destination
See comment in PubMed Commons below
Clin Exp Immunol. 2005 Dec;142(3):569-75.

The glycans deficiencies of macromolecular IgA1 is a contributory factor of variable pathological phenotypes of IgA nephropathy.

Author information

  • 1Renal Division and Institute of Nephrology, Peking University First Hospital, Beijing, China.

Abstract

Recent evidence has suggested that IgA1-containing macromolecules and the glycosylation of IgA1 in sera from patients with IgAN might involve the pathogenesis of IgAN. However, whether the different histological phenotypes can be attributed or not to the aberrant glycosylation of macromolecular IgA1 has not yet been elucidated. The aim of the current study is to investigate the glycosylation of IgA1 molecules in serum IgA1-containing macromolecules and their association with pathological phenotypes of IgAN. Sera was collected from 40 patients with IgAN and 20 donors. Twenty patients had mild mesangial proliferative IgAN, the remaining 20 had focal proliferative sclerosing IgAN. Polyethylene glycol 6000 was used to precipitate the macromolecules from sera of patients and controls. Biotinylated lectins were used in an enzyme-linked immunosorbent assay (ELISA) to examine different glycans on IgA1 molecules. The alpha2,6 sialic acid was detected by elderberry bark lectin (SNA) and the exposure of terminal galactose (Gal) and N-acetylgalactosamine (GalNAc) were detected by Arachis hypogaea (PNA) and Vilsa villosa lectin (VVL), respectively. The IgA1 glycans levels corrected by IgA1 concentrations were compared between patients and controls. Reduced terminal alpha2,6 sialic acid of IgA1 (79.89 +/- 25.17 versus 62.12 +/- 24.50, P = 0.034) was demonstrated only in precipitates from sera of patients with focal proliferative sclerosing IgAN, compared with those from controls. Reduced galactosylation of IgA1 molecules in precipitates was demonstrated in patients with both mild mesangial proliferative IgAN and focal proliferative sclerosing IgAN compared with normal controls (24.52 +/- 18.71 versus 76.84 +/- 32.59 P = 0.000 and 33.48 +/- 25.36 versus 76.84 +/- 32.59 P = 0.000). However, no significant difference was found in IgA1 glycosylation in the supernatant between patients and normal controls (P > 0.05). The glycosylation deficiency of IgA1 existed only in serum IgA1-containing macromolecules of patients with IgAN, and was associated with the renal pathological phenotypes. This suggests that aberrant glycosylation of IgA1 in serum macromolecules might be a contributory factor in the pathogenesis of IgAN.

[PubMed - indexed for MEDLINE]
Free PMC Article
PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for Wiley Icon for PubMed Central
    Loading ...
    Write to the Help Desk