Display Settings:

Format

Send to:

Choose Destination
See comment in PubMed Commons below

UV-embossed microchannel in biocompatible polymeric film: application to control of cell shape and orientation of muscle cells.

Author information

  • 1The Biological and Chemical Process Engineering Laboratory, School of Mechanical and Aerospace Engineering, 50 Nanyang Avenue, Singapore 639798.

Abstract

This article shows that ultra violet (UV) micro-embossing can be successfully used for fabricating biocompatible micropatterned films with microchannels separated by high aspect ratio microwalls. Eight series of micropatterns were investigated; the width of the microwall was either 10 or 25 microm and that of the microchannel either 40, 80, 120, or 160 microm. The material investigated was principally polyurethane diacrylate. The UV-embossed micropattern was extracted with methanol, converting the micropatterns from cytotoxic to biocompatible. The typical UV embossing method was modified by using a marginally adhesive polyester substrate, which facilitates demolding but is removable before methanol extraction to avoid fragmentation of the embossed micropatterns. The effect of the micropatterns on A7r5 smooth muscle cells and C2C12 skeletal muscle cells was investigated. The dimensions of both channel and wall have significant effects on the elongation of both muscle cells. In the narrower 40-microm channel, the C2C12 cells merged together to form myofibers. These results indicate that UV-embossed micropatterns may present a useful scaffold for in vitro cell shape and orientation control needed in vascular and muscle tissue engineering.

(c) 2005 Wiley Periodicals, Inc.

PMID:
16292762
[PubMed - indexed for MEDLINE]
PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Icon for John Wiley & Sons, Inc.
    Loading ...
    Write to the Help Desk