Format

Send to

Choose Destination
See comment in PubMed Commons below
Annu Rev Genet. 2005;39:431-51.

Nonhomologous end joining in yeast.

Author information

  • 1Cellular and Molecular Biology Program, University of Michigan Medical School, Ann Arbor, Michigan 48109-0602, USA. daleyj@umich.edu

Abstract

Nonhomologous end joining (NHEJ), the direct rejoining of DNA double-strand breaks, is closely associated with illegitimate recombination and chromosomal rearrangement. This has led to the concept that NHEJ is error prone. Studies with the yeast Saccharomyces cerevisiae have revealed that this model eukaryote has a classical NHEJ pathway dependent on Ku and DNA ligase IV, as well as alternative mechanisms for break rejoining. The evolutionary conservation of the Ku-dependent process includes several genes dedicated to this pathway, indicating that classical NHEJ at least is a strong contributor to fitness in the wild. Here we review how double-strand break structure, the yeast NHEJ proteins, and alternative rejoining mechanisms influence the accuracy of break repair. We also consider how the balance between NHEJ and homologous repair is regulated by cell state to promote genome preservation. The principles discussed are instructive to NHEJ in all organisms.

[PubMed - indexed for MEDLINE]

LinkOut - more resources

Full Text Sources

Other Literature Sources

Molecular Biology Databases

PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for Atypon
    Loading ...
    Write to the Help Desk