Format

Send to:

Choose Destination
See comment in PubMed Commons below
EMBO J. 2005 Dec 7;24(23):4061-70. Epub 2005 Nov 10.

SOD2 overexpression: enhanced mitochondrial tolerance but absence of effect on UCP activity.

Author information

  • 1Department of Laboratory Medicine, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden.

Abstract

We have created P1 artificial chromosome transgenic mice expressing the human mitochondrial superoxide dismutase 2 (SOD2) and thus generated mice with a physiologically controlled augmentation of SOD2 expression leading to increased SOD2 enzyme activities and lowered superoxide levels. In the transgenic mice, effects on mitochondrial function such as enhanced oxidative capacity and greater resistance against inducers of mitochondrial permeability were observed. Superoxide in the mitochondrial matrix has been proposed to activate uncoupling proteins (UCPs), thus providing a feedback mechanism that will lower respiratory chain superoxide production by increasing a proton leak across the inner mitochondrial membrane. However, UCP1 and UCP3 activities and mitochondrial ATP production rates were not altered in isolated mitochondria from SOD2 transgenic mice, despite lowered superoxide levels. Globally, the transgenic mice displayed normal resting metabolic rates, indicating an absence of effect on any UCP activities, and normal oxygen consumption responses after norepinephrine injection. These results strongly suggest that endogenously generated matrix superoxide does not regulate UCP activity and in vivo energy expenditure.

PMID:
16281056
[PubMed - indexed for MEDLINE]
PMCID:
PMC1356306
Free PMC Article
PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for HighWire Icon for PubMed Central
    Loading ...
    Write to the Help Desk