Send to:

Choose Destination
See comment in PubMed Commons below
Biochemistry. 2005 Nov 15;44(45):14725-31.

Recombinant expression and functional characterization of human hephaestin: a multicopper oxidase with ferroxidase activity.

Author information

  • 1Department of Biochemistry and Molecular Biology and Centre for Blood Research, University of British Columbia, Life Sciences Centre, 2350 Health Sciences Mall, Vancouver, British Columbia, Canada V6T 1Z3.


Human hephaestin (Hp) is a transmembrane protein that has been implicated in duodenal iron export. Mutations in the murine hephaestin gene (sla) produce microcytic, hypochromic anemia that is refractory to oral iron therapy. Hp shares approximately 50% sequence identity with the plasma multicopper ferroxidase ceruloplasmin including conservation of residues involved in disulfide bond formation and metal coordination. On the basis of this similarity to ceruloplasmin, human hephaestin may also bind copper and possess ferroxidase activity. To test this hypothesis, human hephaestin cDNA has been cloned by reverse transcription of human duodenal mRNA. Following in vitro mutagenesis to make the encoded polypeptide suitable for expression and purification, the hephaestin cDNA was cloned into the expression vector pNUT and introduced into baby hamster kidney cells. After selection with methotrexate, the baby hamster kidney cells secreted the recombinant human hephaestin into the medium at a level of approximately 2 mg/L. Purification was achieved by a single immunoaffinity chromatography step. As judged by SDS-PAGE, N-terminal sequence analysis, and matrix-assisted laser desorption ionization-time-of-flight mass spectrometry, the purified hephaestin was homogeneous with a mass of 129600 Da, suggesting a carbohydrate content of 7.7%. Inductively coupled plasma mass spectrometry revealed that recombinant hephaestin contained an average of 3.13 atoms of copper per protein molecule. A visible absorption maximum was observed at 607 nm, consistent with the presence of a Type 1 copper site. By using ferrous ammonium sulfate as a substrate, recombinant hephaestin was shown to have ferroxidase activity with a K(m) of 2.1 microM for Fe(II). Lastly, urea PAGE showed that hephaestin was able to catalyze formation of diferric transferrin from Fe(II) and apotransferrin.

[PubMed - indexed for MEDLINE]
PubMed Commons home

PubMed Commons

How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for American Chemical Society
    Loading ...
    Write to the Help Desk