Display Settings:

Format

Send to:

Choose Destination
See comment in PubMed Commons below
Nucleic Acids Res. 2005 Nov 3;33(19):e170.

In vitro non-viral gene delivery with nanofibrous scaffolds.

Author information

  • 1Department of Chemistry, Stony Brook University Stony Brook, NY 11794-3400, USA.

Abstract

Extracellular and intracellular barriers typically prevent non-viral gene vectors from having an effective transfection efficiency. Formulation of a gene delivery vehicle that can overcome the barriers is a key step for successful tissue regeneration. We have developed a novel core-shelled DNA nanoparticle by invoking solvent-induced condensation of plasmid DNA (beta-galactosidase or GFP) in a solvent mixture [94% N,N-dimethylformamide (DMF) + 6% 1x TE buffer] and subsequent encapsulation of the condensed DNA globule in a triblock copolymer, polylactide-poly(ethylene glycol)-polylactide (L8E78L8), in the same solvent environment. The polylactide shell protects the encapsulated DNA from degradation during electrospinning of a mixture of encapsulated DNA nanoparticles and biodegradable PLGA (a random copolymer of lactide and glycolide) to form a nanofibrous non-woven scaffold using the same solution mixture. The bioactive plasmid DNA can then be released in an intact form from the scaffold with a controlled release rate and transfect cells in vitro.

PMID:
16269820
[PubMed - indexed for MEDLINE]
PMCID:
PMC1277813
Free PMC Article

Images from this publication.See all images (5)Free text

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Icon for HighWire Icon for PubMed Central
    Loading ...
    Write to the Help Desk