Display Settings:

Format

Send to:

Choose Destination
See comment in PubMed Commons below
Dev Cell. 2005 Nov;9(5):639-50.

Canonical Wnt signaling and its antagonist regulate anterior-posterior axis polarization by guiding cell migration in mouse visceral endoderm.

Author information

  • 1Vertebrate Body Plan Group, RIKEN Center for Developmental Biology (CDB), 2-2-3 Minatojima-minami-cho, Chuou-ku Kobe, Hyogo 650-0047, Japan.

Abstract

The mouse embryonic axis is initially formed with a proximal-distal orientation followed by subsequent conversion to a prospective anterior-posterior (A-P) polarity with directional migration of visceral endoderm cells. Importantly, Otx2, a homeobox gene, is essential to this developmental process. However, the genetic regulatory mechanism governing axis conversion is poorly understood. Here, defective axis conversion due to Otx2 deficiency can be rescued by expression of Dkk1, a Wnt antagonist, or following removal of one copy of the beta-catenin gene. Misexpression of a canonical Wnt ligand can also inhibit correct A-P axis rotation. Moreover, asymmetrical distribution of beta-catenin localization is impaired in the Otx2-deficient and Wnt-misexpressing visceral endoderm. Concurrently, canonical Wnt and Dkk1 function as repulsive and attractive guidance cues, respectively, in the migration of visceral endoderm cells. We propose that Wnt/beta-catenin signaling mediates A-P axis polarization by guiding cell migration toward the prospective anterior in the pregastrula mouse embryo.

PMID:
16256739
[PubMed - indexed for MEDLINE]
Free full text
PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Icon for Elsevier Science
    Loading ...
    Write to the Help Desk