Display Settings:

Format

Send to:

Choose Destination
See comment in PubMed Commons below
J Cell Sci. 2005 Nov 1;118(Pt 21):4947-57.

Scale-free networks in cell biology.

Author information

  • Department of Physics and Huck Institutes of the Life Sciences, Pennsylvania State University, University Park, PA 16802, USA. ralbert@phys.psu.edu

Abstract

A cell's behavior is a consequence of the complex interactions between its numerous constituents, such as DNA, RNA, proteins and small molecules. Cells use signaling pathways and regulatory mechanisms to coordinate multiple processes, allowing them to respond to and adapt to an ever-changing environment. The large number of components, the degree of interconnectivity and the complex control of cellular networks are becoming evident in the integrated genomic and proteomic analyses that are emerging. It is increasingly recognized that the understanding of properties that arise from whole-cell function require integrated, theoretical descriptions of the relationships between different cellular components. Recent theoretical advances allow us to describe cellular network structure with graph concepts and have revealed organizational features shared with numerous non-biological networks. We now have the opportunity to describe quantitatively a network of hundreds or thousands of interacting components. Moreover, the observed topologies of cellular networks give us clues about their evolution and how their organization influences their function and dynamic responses.

PMID:
16254242
[PubMed - indexed for MEDLINE]
Free full text
PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for HighWire
    Loading ...
    Write to the Help Desk