Display Settings:

Format

Send to:

Choose Destination
See comment in PubMed Commons below
Bioprocess Biosyst Eng. 2006 Mar;28(4):243-50. Epub 2005 Oct 25.

Effects of agitation on the microalgae Phaeodactylum tricornutum and Porphyridium cruentum.

Author information

  • 1Department of Chemical Engineering, University of Almería, 04071, Almería, Spain.

Abstract

The effect of mechanical agitation on the microalgae Phaeodactylum tricornutum and Porphyridium cruentum was investigated in aerated continuous cultures with and without the added shear protectant Pluronic F68. Damage to cells was quantified through a decrease in the steady state concentration of the biomass in the photobioreactor. For a given aeration rate, the steady state biomass concentration rose with increasing rate of mechanical agitation until an upper limit on agitation speed was reached. This maximum tolerable agitation speed depended on the microalgal species. Further increase in agitation speed caused a decline in the steady state concentration of the biomass. An impeller tip speed of >1.56 m s(-1) damaged P. tricornutum in aerated culture. In contrast, the damage threshold tip speed for P. cruentum was between 2.45 and 2.89 m s(-1). Mechanical agitation was not the direct cause of cell damage. Damage occurred because of the rupture of small gas bubbles at the surface of the culture, but mechanical agitation was instrumental in generating the bubbles that ultimately damaged the cells. Pluronic F68 protected the cells against damage and increased the steady state concentration of the biomass relative to operation without the additive. The protective effect of Pluronic was concentration-dependent over the concentration range of 0.01-0.10% w/v.

PMID:
16247611
[PubMed - indexed for MEDLINE]
PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for Springer
    Loading ...
    Write to the Help Desk