Format

Send to:

Choose Destination
See comment in PubMed Commons below
Biochem Soc Trans. 2005 Nov;33(Pt 5):996-9.

Crystallographic and single-particle analyses of native- and nucleotide-bound forms of the cystic fibrosis transmembrane conductance regulator (CFTR) protein.

Author information

  • 1Molecules to Cells Section, Faculty of Life Sciences, The University of Manchester, Manchester M60 1QD, UK. Nuri.Awayn@postgrad.manchester.ac.uk

Abstract

Cystic fibrosis, one of the major human inherited diseases, is caused by defects in the CFTR (cystic fibrosis transmembrane conductance regulator), a cell-membrane protein. CFTR acts as a chloride channel which can be opened by ATP. Low-resolution structural studies of purified recombinant human CFTR are described in the present paper. Localization of the C-terminal decahistidine tag in CFTR was achieved by Ni2+-nitriloacetate nanogold labelling, followed by electron microscopy and single-particle analysis. The presence of the gold label appears to improve the single-particle-alignment procedure. Projection structures of CFTR from two-dimensional crystals analysed by electron crystallography displayed two alternative conformational states in the presence of nucleotide and nanogold, but only one form of the protein was observed in the quiescent (nucleotide-free) state.

PMID:
16246030
[PubMed - indexed for MEDLINE]
PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for Portland Press
    Loading ...
    Write to the Help Desk