Display Settings:

Format

Send to:

Choose Destination
See comment in PubMed Commons below
Biochem Biophys Res Commun. 2005 Dec 2;337(4):1267-75. Epub 2005 Oct 10.

Regulation of tissue factor and angiogenesis-related genes by changes in cell shape.

Author information

  • 1Henderson Research Centre, McMaster University, Hamilton, Ont., Canada L8V 1C3.

Abstract

During development, tissue injury, and cancer, epithelial cells engage in communication with the vascular system by using several molecular mediators acting directly or through changes in the haemostatic system.The latter category is epitomised by the procoagulant cellular receptor known as tissue factor (TF). Here, we show that when cellular architecture is altered by a shift in culture conditions from monolayer to three-dimensional multicellular spheroids, expression of multiple angiogenesis effectors (VEGF, TSP-1, TSP-2, Ang-1, and TF) is profoundly altered. In particular, TF is dramatically upregulated in a transformed murine breast epithelial cell line (EMT6) under these conditions. This appears to be linked to a particular change in cell shape and cytoskeletal (actin) reorganisation, as treatment of these cells with cytochalasin D (Cyt D), but not with latrunculin B, recapitulates and potentiates TF upregulation. Collectively, these results suggest that the ability of epithelial cells to interact with the vascular system via expression of the TF gene (and other effectors) is under the control of complex alterations in cellular architecture.

PMID:
16236262
[PubMed - indexed for MEDLINE]
PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for Elsevier Science
    Loading ...
    Write to the Help Desk