Format

Send to:

Choose Destination
See comment in PubMed Commons below
FEBS Lett. 2005 Oct 24;579(25):5759-64. Epub 2005 Oct 5.

Glucose transporter-2 (GLUT2) promoter mediated transgenic insulin production reduces hyperglycemia in diabetic mice.

Author information

  • 1Department of Pathology, University of Florida College of Medicine, Gainesville, 32610, USA. burkhardtb@email.chop.edu

Abstract

Insulin production afforded by hepatic gene therapy (HGT) retains promise as a potential treatment for type 1 diabetes, but successful approaches have been limited. We employed a novel and previously untested promoter for this purpose, glucose transporter-2 (GLUT2) to drive insulin production via delivery by recombinant adeno-associated virus (rAAV). In vitro, the GLUT2 promoter was capable of robust glucose-responsive expression in transduced HepG2 human hepatoma cells. Therefore, rAAV constructs were designed to express the furin-cleavable human preproinsulin B10 gene, under the control of the murine GLUT2 promoter and packaged for delivery with rAAV expressing the type 5 capsid. Streptozotocin-induced diabetic mice were subjected to hepatic portal vein injection immediately followed by implantation of a sustained-release insulin pellet to allow time for transgenic expression. All mice injected with the rAAV5-GLUT2-fHPIB10 virus remained euglycemic for up to 35 days post-injection, with 50% euglycemic after 77 days post-injection. In contrast, mock-injected mice became hyperglycemic within 15 days post-injection following dissolution of the insulin pellet. Serum levels of both human insulin and C-peptide further confirmed successful transgenic delivery by the rAAV5-GLUT2-fHPIB10 virus. These findings indicate that the GLUT2 promoter may be a potential candidate for regulating transgenic insulin production for hepatic insulin gene therapy in the treatment of type I diabetes.

PMID:
16223491
[PubMed - indexed for MEDLINE]
Free full text
PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for Elsevier Science
    Loading ...
    Write to the Help Desk