Display Settings:

Format

Send to:

Choose Destination
See comment in PubMed Commons below
Nature. 2005 Dec 22;438(7071):1176-80. Epub 2005 Oct 12.

Histone H3 serine 10 phosphorylation by Aurora B causes HP1 dissociation from heterochromatin.

Author information

  • 1Research Institute of Molecular Pathology, Dr. Bohrgasse 7, A-1030 Vienna, Austria.

Abstract

Histones are subject to numerous post-translational modifications. Some of these 'epigenetic' marks recruit proteins that modulate chromatin structure. For example, heterochromatin protein 1 (HP1) binds to histone H3 when its lysine 9 residue has been tri-methylated by the methyltransferase Suv39h (refs 2-6). During mitosis, H3 is also phosphorylated by the kinase Aurora B. Although H3 phosphorylation is a hallmark of mitosis, its function remains mysterious. It has been proposed that histone phosphorylation controls the binding of proteins to chromatin, but any such mechanisms are unknown. Here we show that antibodies against mitotic chromosomal antigens that are associated with human autoimmune diseases specifically recognize H3 molecules that are modified by both tri-methylation of lysine 9 and phosphorylation of serine 10 (H3K9me3S10ph). The generation of H3K9me3S10ph depends on Suv39h and Aurora B, and occurs at pericentric heterochromatin during mitosis in different eukaryotes. Most HP1 typically dissociates from chromosomes during mitosis, but if phosphorylation of H3 serine 10 is inhibited, HP1 remains chromosome-bound throughout mitosis. H3 phosphorylation by Aurora B is therefore part of a 'methyl/phos switch' mechanism that displaces HP1 and perhaps other proteins from mitotic heterochromatin.

Comment in

PMID:
16222244
[PubMed - indexed for MEDLINE]
PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Icon for Nature Publishing Group Icon for Faculty of 1000
    Loading ...
    Write to the Help Desk