Display Settings:


Send to:

Choose Destination
See comment in PubMed Commons below
Brain Res. 2005 Oct 26;1060(1-2):55-61. Epub 2005 Oct 5.

17beta-Estradiol attenuates blood-brain barrier disruption induced by cerebral ischemia-reperfusion injury in female rats.

Author information

  • 1Department of Pharmacology and Neuroscience, University of North Texas, Health Science Center at Fort Worth, 3500 Camp Bowie Boulevard, Fort Worth, TX 76107, USA.


Disruption of blood-brain barrier (BBB), mediated through matrix metalloproteinases (MMPs), is a critical event during cerebral ischemia. While neuroprotective effects of estrogens have been well established in ischemic stroke models, the effects of estrogens on BBB integrity remain to be elucidated. In the present study, we determined effects of 17beta-estradiol (E2) on BBB disruption induced by transient focal cerebral ischemia and its effects on MMP2 and MMP9 activation. Transient cerebral ischemia was induced by middle cerebral artery (MCA) occlusion for 1 h followed by reperfusion in ovariectomized rats. E2 (100 microg/kg) or vehicle was administered 2 h before MCA occlusion. BBB integrity was determined by fluorescent detection of extravasated Evans blue. In separate experiments, effect of E2 on MMP2 and MMP9 expression and activation was determined by immunoblot and MMPs activity assay. E2 treatment prevented more than 50% and 30% of BBB disruption in the ischemic cortex and subcortex at 4 h after reperfusion, respectively. MMP2 and MMP9 expression was elevated at 2 h and peaked at 4 h after reperfusion in the ischemic cortex, which was markedly reduced by E2 treatment. E2 treatment also attenuated the increase of MMPs activity induced by ischemia-reperfusion injury. In conclusion, estrogens could attenuate BBB disruption induced by transient cerebral ischemia, by inhibition of MMP2 and MMP9 activation. Our results suggest an important role of estrogens as multiple targeting protectants against ischemic stroke on cellular as well as vascular components of central nervous system.

[PubMed - indexed for MEDLINE]
PubMed Commons home

PubMed Commons

How to join PubMed Commons

    Supplemental Content

    Icon for Elsevier Science
    Loading ...
    Write to the Help Desk