Display Settings:


Send to:

Choose Destination
See comment in PubMed Commons below
J Magn Reson Imaging. 2005 Nov;22(5):597-604.

Comparison of contrast agents with high molarity and with weak protein binding in cerebral perfusion imaging at 3 T.

Author information

  • 1Department of Medical Radiation Physics, Lund University, Lund, Sweden. Oliver.Thilmann@med.lu.se



To examine and compare properties of high-molarity contrast agent gadobutrol (Gadovist) and weakly protein-binding agent gadobenate-dimeglumine (MultiHance in dynamic susceptibility contrast (DSC) perfusion imaging at 3 T.


Sixteen healthy volunteers underwent three separate examinations with contrast agent doses of 0.1 and 0.2 mmol/kg body weight (bw) gadobutrol and 0.1 mmol/kg bw gadobenate-dimeglumine. Maps of relative regional cerebral blood volume (rCBV) and blood flow (rCBF) were calculated using deconvolution based on singular value decomposition. Signal and concentration time curves, the concentration-to-noise ratio (SNR(c)), and gray matter (GM)-to-white matter (WM) rCBV and rCBF contrast and ratios were evaluated in a region of interest (ROI)-based analysis. Image quality of calculated parametric maps was assessed in direct visual comparison and with respect to suitability for diagnostic purposes.


The contrast agents displayed very similar results in the 0.1 mmol/kg examinations, both with respect to the quantitative evaluation parameters and in the qualitative assessment of the calculated parametric maps. Maps from 0.2 mmol/kg examinations were rated as being superior in quality, but with respect to diagnostic suitability all contrast agents and doses yielded images of sufficient quality.


At 3 T, a gadobutrol or gadobenate-dimeglumine dose of 0.1 mmol/kg is sufficient for DSC magnetic resonance imaging (MRI) perfusion assessment. At the used small injection volumes, the tissue concentration curve was determined only by the gadolinium (Gd) dosage in mmol/kg, and the T2* relaxation effects of the two agents can be considered to be nearly identical in the applied gradient-echo (GRE) sequence.

J. Magn. Reson. Imaging 2005. (c) 2005 Wiley-Liss, Inc.

[PubMed - indexed for MEDLINE]
PubMed Commons home

PubMed Commons

How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for John Wiley & Sons, Inc.
    Loading ...
    Write to the Help Desk