Format

Send to

Choose Destination
See comment in PubMed Commons below
Blood. 2006 Feb 1;107(3):1184-91. Epub 2005 Sep 29.

Immunoselection by natural killer cells of PIGA mutant cells missing stress-inducible ULBP.

Author information

  • 1Department of Hematology, Kumamoto University Graduate School of Medical Sciences, Kumamoto, Japan.

Abstract

The mechanism by which paroxysmal nocturnal hemoglobinuria (PNH) clones expand is unknown. PNH clones harbor PIGA mutations and do not synthesize glycosylphosphatidylinositol (GPI), resulting in deficiency of GPI-linked membrane proteins. GPI-deficient blood cells often expand in patients with aplastic anemia who sustain immune-mediated marrow injury putatively induced by cytotoxic cells, hence suggesting that the injury allows PNH clones to expand selectively. We previously reported that leukemic K562 cells preferentially survived natural killer (NK) cell-mediated cytotoxicity in vitro when they acquired PIGA mutations. We herein show that the survival is ascribable to the deficiency of stress-inducible GPI-linked membrane proteins ULBP1 and ULBP2, which activate NK and T cells. The ULBPs were detected on GPI-expressing but not on GPI-deficient K562 cells. In the presence of antibodies to either the ULBPs or their receptor NKG2D on NK cells, GPI-expressing cells were as less NK sensitive as GPI-deficient cells. NK cells therefore spared ULBP-deficient cells in vitro. The ULBPs were identified only on GPI-expressing blood cells of a proportion of patients with PNH but none of healthy individuals. Granulocytes of the patients partly underwent killing by autologous cytotoxic cells, implying ULBP-associated blood cell injury. In this setting, the lack of ULBPs may allow immunoselection of PNH clones.

[PubMed - indexed for MEDLINE]
Free full text

Publication Types, MeSH Terms, Substances

PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for HighWire
    Loading ...
    Write to the Help Desk