Format

Send to

Choose Destination
See comment in PubMed Commons below
Anesth Analg. 2005 Oct;101(4):942-9, table of contents.

Morphine enhances isoflurane-induced postconditioning against myocardial infarction: the role of phosphatidylinositol-3-kinase and opioid receptors in rabbits.

Author information

  • 1Department of Anesthesiology, Medical College of Wisconsin and Clement J. Zablocki Veterans Affairs Medical Center, Milwaukee, Wisconsin 53226, USA.

Abstract

Isoflurane reduces myocardial infarct size during early reperfusion by activating phosphatidylinositol-3-kinase (PI3K) signaling. We tested the hypothesis that this cardioprotection against reperfusion injury is enhanced by morphine and that a decrease in apoptosis plays a role in preservation of myocardial viability. Rabbits (n = 108) instrumented for hemodynamic measurement and subjected to a 30-min coronary occlusion followed by 3 h reperfusion received 0.9% saline, the selective PI3K inhibitor wortmannin (0.6 mg/kg), or the nonselective opioid antagonist naloxone (6 mg/kg) before coronary occlusion in the presence or absence of isoflurane (0.5 or 1.0 MAC), morphine (0.05 or 0.1 mg/kg), or their combination administered for 3 min before and 2 min after reperfusion. Infarct size was determined using triphenyltetrazolium staining and apoptosis assessed using cytochrome c translocation and Terminal Deoxynucleotidyl Transferase-Mediated dUTP Nick End Labeling (TUNEL) staining of left ventricular myocardium in situ. Isoflurane (1.0 but not 0.5 MAC) and morphine (0.1 but not 0.05 mg/kg) reduced (P < 0.05) infarct size (mean +/- sd 21% +/- 4%, 44% +/- 6%, 19% +/- 4%, and 41% +/- 6% of left ventricular area at risk, respectively) as compared with control (41% +/- 4%). The combination of 0.5 MAC isoflurane and 0.05 mg/kg morphine also decreased infarct size (18% +/- 9%). Wortmannin and naloxone alone did not affect infarct size but blocked the protection produced by isoflurane, morphine, and their combination. Isoflurane and morphine reduced cytochrome c translocation and TUNEL staining. The results indicate that morphine enhances isoflurane-induced postconditioning by activating PI3K and opioid receptors in vivo. A reduction in apoptotic cell death contributes to preservation of myocardial integrity during postconditioning by isoflurane.

IMPLICATIONS:

The results of this study indicate that morphine enhances isoflurane-induced postconditioning by activating phosphatidylinositol-3-kinase and opioid receptors in vivo. A reduction in apoptotic cell death contributes to preservation of myocardial integrity during postconditioning by isoflurane and morphine.

[PubMed - indexed for MEDLINE]
PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for Lippincott Williams & Wilkins
    Loading ...
    Write to the Help Desk