Display Settings:

Format

Send to:

Choose Destination
See comment in PubMed Commons below
J Invest Dermatol. 2005 Oct;125(4):692-9.

The relaxin gene knockout mouse: a model of progressive scleroderma.

Author information

  • 1Relaxin Group, Howard Florey Institute of Experimental Physiology & Medicine, The University of Melbourne, Victoria, Australia. c.samuel@hfi.unimelb.edu.au

Abstract

Relaxin is a peptide hormone with anti-fibrotic properties. To investigate the long-term effects of relaxin deficiency on the ageing skin, we compared structural changes in the skin of ageing relaxin-deficient (RLX-/-) and normal (RLX+/+) mice, by biochemical, histological, and magnetic resonance imaging analyses. Skin biopsies from RLX+/+ and RLX-/- mice were obtained at different ages and analyzed for changes in collagen expression and distribution. We demonstrated an age-related progression of dermal fibrosis and thickening in male and female RLX-/- mice, associated with marked increases in types I and III collagen. The increased collagen was observed primarily in the dermis of RLX-/- mice by 1 mo of age, and eventually superseded the hypodermal layer. Additionally, fibroblasts from the dermis of RLX-/- mice were shown to produce increased collagen in vitro. Recombinant human gene-2 (H2) relaxin treatment of RLX-/- mice resulted in the complete reversal of dermal fibrosis, when applied to the early onset of disease, but was ineffective when applied to more established stages of dermal scarring. These combined findings demonstrate that relaxin provides a means to regulate excessive collagen deposition in disease states characterized by dermal fibrosis and with our previously published work demonstrate the relaxin-null mouse as a model of progressive scleroderma.

PMID:
16185267
[PubMed - indexed for MEDLINE]
Free full text
PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for Nature Publishing Group
    Loading ...
    Write to the Help Desk