Display Settings:

Format

Send to:

Choose Destination
We are sorry, but NCBI web applications do not support your browser and may not function properly. More information
J Hazard Mater. 2006 Feb 6;128(2-3):265-72. Epub 2005 Sep 22.

Decolorization of Reactive Red 2 by advanced oxidation processes: Comparative studies of homogeneous and heterogeneous systems.

Author information

  • 1Department of Environmental Engineering, Da-Yeh University, 112 Shan-Jiau Rd., Da-Tsuen, Chang-Hua 515, Taiwan, ROC. chunghsinwu@yahoo.com.tw

Abstract

This study investigated the decolorization of the Reactive Red 2 in water using advanced oxidation processes (AOPs): UV/TiO2, UV/SnO2, UV/TiO2+SnO2, O3, O3+MnO2, UV/O3 and UV/O3+TiO2+SnO2. Kinetic analyses indicated that the decolorization rates of Reactive Red 2 could be approximated as pseudo-first-order kinetics for both homogeneous and heterogeneous systems. The decolorization rate at pH 7 exceeded pH 4 and 10 in UV/TiO2 and UV/TiO2+SnO2 systems, respectively. However, the rate constants in the systems (including O3) demonstrated the order of pH 10>pH 7>pH 4. The UV/TiO2+SnO2 and O3+MnO2 systems exhibited a greater decolorization rate than the UV/TiO2 and O3 systems, respectively. Additionally, the promotion of rate depended on pH. The variation of dye concentration influenced the decolorization efficiency of heterogeneous systems more significant than homogeneous systems. Experimental results verified that decolorization and desulfuration occurred at nearly the same rate. Moreover, the decolorization rate constants at pH 7 in various systems followed the order of UV/O3 > or = O3+MnO2 > or = UV/O3+TiO2+SnO2 > O3 > UV/TiO2+SnO2 > or = UV/TiO2 > UV/SnO2.

PMID:
16182444
[PubMed - indexed for MEDLINE]
PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Icon for Elsevier Science
    Loading ...
    Write to the Help Desk