Format

Send to

Choose Destination
See comment in PubMed Commons below
J Chem Inf Model. 2005 Sep-Oct;45(5):1256-66.

Statistically validated QSARs, based on theoretical descriptors, for modeling aquatic toxicity of organic chemicals in Pimephales promelas (fathead minnow).

Author information

  • 1Department of Structural and Functional Biology, QSAR and Environmental Chemistry Research Unit, University of Insubria, via Dunant 3, 21100 Varese, Italy.

Abstract

The use of Quantitative Structure-Activity Relationships in assessing the potential negative effects of chemicals plays an important role in ecotoxicology. (LC50)(96h) in Pimephales promelas (Duluth database) is widely modeled as an aquatic toxicity end-point. The object of this study was to compare different molecular descriptors in the development of new statistically validated QSAR models to predict the aquatic toxicity of chemicals classified according to their MOA and in a unique general model. The applied multiple linear regression approach (ordinary least squares) is based on theoretical molecular descriptor variety (1D, 2D, and 3D, from DRAGON package, and some calculated logP). The best combination of modeling descriptors was selected by the Genetic Algorithm-Variable Subset Selection procedure. The robustness and the predictive performance of the proposed models was verified using both internal (cross-validation by LOO, bootstrap, Y-scrambling) and external statistical validations (by splitting the original data set into training and validation sets by Kohonen-artificial neural networks (K-ANN)). The model applicability domain (AD) was checked by the leverage approach to verify prediction reliability.

[PubMed - indexed for MEDLINE]
PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for American Chemical Society
    Loading ...
    Write to the Help Desk