Format

Send to:

Choose Destination
See comment in PubMed Commons below
Lab Chip. 2005 Oct;5(10):1041-7. Epub 2005 Aug 5.

A microfluidic device using a green organic light emitting diode as an integrated excitation source.

Author information

  • 1Department of Chemistry, Tsinghua University, Beijing, 100084, China.

Abstract

A simply fabricated microfluidic device using a green organic light emitting diode (OLED) and thin film interference filter as integrated excitation source is presented and applied to fluorescence detection of proteins. A layer-by-layer compact system consisting of glass/PDMS microchip, pinhole, excitation filter and OLED is designed and equipped with a coaxial optical fiber and for fluorescence detection a 300 microm thick excitation filter is employed for eliminating nearly 80% of the unwanted light emitted by OLEDs which has overlaped with the fluorescence spectrum of the dyes. The distance between OLED illuminant and microchannels is limited to approximately 1 mm for sensitive detection. The achieved fluorescence signal of 300 microM Rhodamine 6G is about 13 times as high as that without the excitation filter and 3.5 times the result of a perpendicular detection structure. This system has been used for fluorescence detection of Rhodamine 6G, Alexa 532 and BSA conjugates in 4% linear polyacrymide (LPA) buffer (in 1 x TBE, pH 8.3) and 1.4 fmol and 35 fmol mass detection limits at 0.7 nl injection volume for Alexa and Rhodamine dye have been obtained, respectively.

PMID:
16175258
[PubMed - indexed for MEDLINE]
PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for Royal Society of Chemistry
    Loading ...
    Write to the Help Desk