Display Settings:

Format

Send to:

Choose Destination
See comment in PubMed Commons below
Genome Res. 2005 Oct;15(10):1393-401. Epub 2005 Sep 16.

Sex chromosome evolution: molecular aspects of Y-chromosome degeneration in Drosophila.

Author information

  • Department of Ecology, Behavior and Evolution, University of California, San Diego, La Jolla, California 92093, USA. dbachtrog@ucsd.edu

Abstract

Ancient Y-chromosomes of various organisms contain few active genes and an abundance of repetitive DNA. The neo-Y chromosome of Drosophila miranda is in transition from an ordinary autosome to a genetically inert Y-chromosome, while its homolog, the neo-X chromosome, is evolving partial dosage compensation. Here, I compare four large genomic regions located on the neo-sex chromosomes that contain a total of 12 homologous genes. In addition, I investigate the partial coding sequence for 56 more homologous gene pairs from the neo-sex chromosomes. Little modification has occurred on the neo-X chromosome, and genes are highly constrained at the protein level. In contrast, a diverse array of molecular changes is contributing to the observed degeneration of the neo-Y chromosome. In particular, the four large regions surveyed on the neo-Y chromosome harbor several transposable element insertions, large deletions, and a large structural rearrangement. About one-third of all neo-Y-linked genes are nonfunctional, containing either premature stop codons and/or frameshift mutations. Intact genes on the neo-Y are accumulating amino acid and unpreferred codon changes. In addition, both 5'- and 3'-flanking regions of genes and intron sequences are less constrained on the neo-Y relative to the neo-X. Despite heterogeneity in levels of dosage compensation along the neo-X chromosome of D. miranda, the neo-Y chromosome shows surprisingly uniform signs of degeneration.

PMID:
16169921
[PubMed - indexed for MEDLINE]
PMCID:
PMC1240082
Free PMC Article

Images from this publication.See all images (4)Free text

Figure 1.
Figure 2.
Figure 3.
Figure 4.

Publication Types, MeSH Terms, Substances, Secondary Source ID

Publication Types

MeSH Terms

Substances

Secondary Source ID

PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for HighWire Icon for PubMed Central Icon for Faculty of 1000
    Loading ...
    Write to the Help Desk