Display Settings:

Format

Send to:

Choose Destination
See comment in PubMed Commons below
Kidney Int. 2005 Oct;68(4):1708-21.

Coordinated control of renal Ca(2+) transport proteins by parathyroid hormone.

Author information

  • 1Department of Physiology, Nijmegen Centre for Molecular Life Sciences, Radboud University Nijmegen Medical Centre, Nijmegen, The Netherlands.

Abstract

BACKGROUND:

The kidney is one of the affected organs involved in the clinical symptoms of parathyroid hormone (PTH)-related disorders, like primary hyperparathyroidism and familial hypocalciuric hypercalcemia. The molecular mechanism(s) underlying alterations in renal Ca(2+) handling in these disorders is poorly understood.

METHODS:

Parathyroidectomized and PTH-supplemented rats and mice infused with the calcimimetic compound NPS R-467 were used to study the in vivo effect of PTH on the expression of renal transcellular Ca(2+) transport proteins, including the epithelial Ca(2+) channel transient receptor potential, vanilloid, member 5 (TRPV5), calbindins, and the Na(+)/Ca(2+)-exchanger (NCX1). In addition, the effect of PTH on transepithelial Ca(2+) transport in rabbit connecting tubule/cortical collecting duct (CNT/CCD) primary cultures was determined.

RESULTS:

Decreased PTH levels in parathyroidectomized rats or NPS R-467-infused mice, resulted in reduced expression of these proteins, which is consistent with diminished Ca(2+) reabsorption, causing the development of the observed hypocalcemia. PTH supplementation of parathyroidectomized rats restored the expression of the renal Ca(2+) transport machinery and serum Ca(2+) levels, independent of serum 1,25-dihydroxyvitamin D(3) levels and renal vitamin D or Ca(2+)-sensing receptor mRNA abundance. Inhibition of the PTH-stimulated transepithelial Ca(2+) transport by the TRPV5-specific inhibitor ruthenium red reduced the PTH-stimulated expression of calbindin-D(28K) and NCX1 in rabbit CNT/CCD primary cultures.

CONCLUSION:

PTH stimulates renal Ca(2+) reabsorption through the coordinated expression of renal transcellular Ca(2+) transport proteins. Moreover, the PTH-induced stimulation is enhanced by the magnitude of the Ca(2+) influx through the gatekeeper TRPV5, which in turn facilitates the expression of the downstream Ca(2+) transport proteins. Therefore, the renal transcellular Ca(2+) transport proteins, including TRPV5, could contribute to the pathogenesis of PTH-related disorders.

PMID:
16164647
[PubMed - indexed for MEDLINE]
PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for Nature Publishing Group
    Loading ...
    Write to the Help Desk