Display Settings:

Format

Send to:

Choose Destination
See comment in PubMed Commons below
Chemosphere. 2006 Apr;63(2):307-14. Epub 2005 Sep 8.

The use of ozone in the remediation of polycyclic aromatic hydrocarbon contaminated soil.

Author information

  • 1Department of Microbiology, Environmental Research Institute, University College Cork, National University of Ireland, Cork, Ireland.

Abstract

The potential of using ozone for the removal of phenanthrene from several different soils, both alone and in combination with biodegradation using a microbial inoculant (Pseudomonas alcaligenes PA-10), was examined. The greater the water content of the soil the less effective the ozone treatment, with air-dried soils showing the greatest removal of phenanthrene; while soils with higher levels of clay also reduced the effectiveness of the ozone treatments. However, at least a 50% reduction in phenanthrene levels was achieved in air-dried soil after an ozone treatment of 6 h at 20 ppm, with up to 85% removal of phenanthrene achieved in sandy soils. The biodegradation results indicate that P. alcaligenes PA-10 may be useful as an inoculant for the removal of PAHs from contaminated soils. Under the conditions used in our experiments, however, pre-ozonation did not enhance subsequent biodegradation of phenanthrene in the soils. Similar levels of phenanthrene removal occurred in both non-ozonated and ozonated Cruden Bay soil inoculated with P. alcaligenes PA-10. However, the biodegradation of phenanthrene in ozonated Boyndie soil was much slower. This may be due to the release of toxic products in this soil during ozonation.

PMID:
16153687
[PubMed - indexed for MEDLINE]
PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for Elsevier Science
    Loading ...
    Write to the Help Desk