Format

Send to:

Choose Destination
See comment in PubMed Commons below
Lasers Med Sci. 2005 Sep;20(2):80-6. Epub 2005 Aug 30.

Evaluation of single versus multiple cryogen spray cooling spurts on in vitro model human skin.

Author information

  • 1Beckman Laser Institute and Medical Clinic, 1002 Health Sciences Road East, Irvine, CA, 92612, USA.

Abstract

Many commercially available dermatologic lasers utilize cryogen spray cooling for epidermal protection. A previous tissue culture study demonstrated that single cryogen spurts (SCS) of 80 ms or less were unlikely to cause cryo-injury in light-skinned individuals. More recently, multiple cryogen spurts (MCS) have been incorporated into commercial devices, but the effects of MCS have not been evaluated. The aim was to study an in vitro tissue culture model and the epidermal and dermal effects of SCS vs patterns of shorter MCS with the same preset total cryogen delivery time (Deltat(c)) and provide an explanation for noted differences. Four different spurt patterns were evaluated: SCS: one 40-ms cryogen spurt; MCS2: two 20-ms cryogen spurts; MCS4: four 10-ms cryogen spurts; MCS8: eight 5-ms cryogen spurts. Actual Deltat(c) and total cooling time (Deltat(Total)) were measured for each spurt pattern. RAFT tissue culture specimens were exposed to cryogen spurt patterns and biopsies were taken immediately and at days 3 and 7. Actual Deltat(c) was increased while Deltat(Total) remained relatively constant as the preset Deltat(c) of 40 ms was delivered as shorter MCS. Progressively more epidermal damage was noted with exposure to the MCS patterns. No dermal injury was noted with either SCS or MCS. For a constant preset Deltat(c) of 40 ms, delivering cryogen in patterns of shorter MCS increased the actual Deltat(c) and consequently the observed epidermal cryo-injury as compared to an SCS.

PMID:
16133654
[PubMed - indexed for MEDLINE]
PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for Springer
    Loading ...
    Write to the Help Desk