Send to:

Choose Destination
See comment in PubMed Commons below
Anal Bioanal Chem. 2005 Oct;383(4):638-44. Epub 2005 Oct 19.

Quantification of urinary conjugates of bisphenol A, 2,5-dichlorophenol, and 2-hydroxy-4-methoxybenzophenone in humans by online solid phase extraction-high performance liquid chromatography-tandem mass spectrometry.

Author information

  • 1Division of Laboratory Sciences, National Center for Environmental Health, Centers for Disease Control and Prevention, 4770 Buford Hwy, Mailstop F17, Atlanta, GA 30341, USA.


Urinary concentrations of phenols or their metabolites have been used as biomarkers to assess the prevalence of exposure to these compounds in the general population. Total urinary concentrations, which include both free and conjugated (glucuronide and sulfated) forms of the compounds, are usually reported. From a toxicologic standpoint, the relative concentrations of the free species compared with their conjugated analogs can be important because conjugation may reduce the potential biologic activity of the phenols. In this study, we determined the percentage of glucuronide and sulfate conjugates of three phenolic compounds, bisphenol A (BPA), 2,5-dichlorophenol (2,5-DCP), and 2-hydroxy-4-methoxybenzophenone (benzophenone-3, BP-3) in 30 urine samples collected between 2000 and 2004 from a demographically diverse group of anonymous adult volunteers. We used a sensitive on-line solid phase extraction-isotope dilution-high performance liquid chromatography-tandem mass spectrometry method. These three phenols were detected frequently in the urine samples tested. Only small percentages of the compounds (9.5% for BPA, and 3% for 2,5-DCP and BP-3) were excreted in their free form. The percentage of the sulfate conjugate was about twice that of the free compound. The glucuronide conjugate was the major metabolite, representing 69.5% (BPA), 89% (2,5-DCP), and 84.6% (BP-3) of the total amount excreted in urine. These results are in agreement with those reported before which suggested that BPA-glucuronide was an important BPA urinary metabolite in humans. To our knowledge, this is the first study describing the distribution of urinary conjugates of BP-3 and 2,5-DCP in humans.

[PubMed - indexed for MEDLINE]
PubMed Commons home

PubMed Commons

How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for Springer
    Loading ...
    Write to the Help Desk