Display Settings:

Format

Send to:

Choose Destination
J Biol Chem. 2005 Nov 18;280(46):38416-23. Epub 2005 Aug 29.

Adaptor protein ARH is recruited to the plasma membrane by low density lipoprotein (LDL) binding and modulates endocytosis of the LDL/LDL receptor complex in hepatocytes.

Author information

  • 1Department of Clinical and Applied Medical Therapy, University of Rome La Sapienza, Italy.

Abstract

ARH is a newly discovered adaptor protein required for the efficient activity of low density lipoprotein receptor (LDLR) in selected tissues. Individuals lacking ARH have severe hypercholesterolemia due to an impaired hepatic clearance of LDL. It has been demonstrated that ARH is required for the efficient internalization of the LDL-LDLR complex and to stabilize the association of the receptor with LDL in Epstein-Barr virus-immortalized B lymphocytes. However, little information is available on the role of ARH in liver cells. Here we provide evidence that ARH is codistributed with LDLR on the basolateral area in confluent HepG2-polarized cells. This distribution is not modified by the overexpression of LDLR. Conversely, the activation of the LDLR-mediated endocytosis, but not the binding of LDL to LDLR, promotes a significant colocalization of ARH with LDL-LDLR complex that peaked at 2 min at 37 degrees C. To further assess the role of ARH in LDL-LDLR complex internalization, we depleted ARH protein using the RNA interference technique. Twenty-four hours after transfection with ARH-specific RNA interference, ARH protein was depleted in HepG2 cells by more than 70%. Quantitative immunofluorescence analysis revealed that the depletion of ARH caused about 80% reduction in LDL internalization. Moreover, our findings indicate that ARH is associated with other proteins of the endocytic machinery. We suggest that ARH is an endocytic sorting adaptor that actively participates in the internalization of the LDL-LDLR complex, possibly enhancing the efficiency of its packaging into the endocytic vesicles.

PMID:
16129683
[PubMed - indexed for MEDLINE]
Free full text
PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for HighWire
    Loading ...
    Write to the Help Desk