Send to

Choose Destination
See comment in PubMed Commons below
Nature. 2005 Sep 29;437(7059):759-63. Epub 2005 Aug 28.

A SUMOylation-dependent pathway mediates transrepression of inflammatory response genes by PPAR-gamma.

Author information

  • 1Department of Cellular and Molecular Medicine, University of California San Diego, 9500 Gilman Drive, La Jolla, California 92093, USA.


Peroxisome proliferator-activated receptor-gamma (PPAR-gamma) has essential roles in adipogenesis and glucose homeostasis, and is a molecular target of insulin-sensitizing drugs. Although the ability of PPAR-gamma agonists to antagonize inflammatory responses by transrepression of nuclear factor kappa B (NF-kappaB) target genes is linked to antidiabetic and antiatherogenic actions, the mechanisms remain poorly understood. Here we report the identification of a molecular pathway by which PPAR-gamma represses the transcriptional activation of inflammatory response genes in mouse macrophages. The initial step of this pathway involves ligand-dependent SUMOylation of the PPAR-gamma ligand-binding domain, which targets PPAR-gamma to nuclear receptor corepressor (NCoR)-histone deacetylase-3 (HDAC3) complexes on inflammatory gene promoters. This in turn prevents recruitment of the ubiquitylation/19S proteosome machinery that normally mediates the signal-dependent removal of corepressor complexes required for gene activation. As a result, NCoR complexes are not cleared from the promoter and target genes are maintained in a repressed state. This mechanism provides an explanation for how an agonist-bound nuclear receptor can be converted from an activator of transcription to a promoter-specific repressor of NF-kappaB target genes that regulate immunity and homeostasis.

[PubMed - indexed for MEDLINE]
Free PMC Article
PubMed Commons home

PubMed Commons

How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for Nature Publishing Group Icon for PubMed Central
    Loading ...
    Write to the Help Desk