Display Settings:

Format

Send to:

Choose Destination
We are sorry, but NCBI web applications do not support your browser and may not function properly. More information
Cereb Cortex. 2006 May;16(5):730-41. Epub 2005 Aug 24.

Effects of synaptic activity on dendritic spine motility of developing cortical layer v pyramidal neurons.

Author information

  • 1Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA 02139, USA.

Abstract

It is increasingly clear that dendritic spines play an important role in compartmentalizing post-synaptic signals and that their dynamic morphological properties have functional consequences. Here, we examine this issue using two-photon microscopy to characterize spine motility on layer V pyramidal neurons in acute slices of the developing mouse cortex. In this system, all spine classes except filopodia become less dynamic as development proceeds. General manipulations of activity (TTX or KCl treatment) do not alter spine dynamics, although increased glutamatergic transmission (AMPA or NMDA treatment) stabilizes developing cortical spines. These effects on spine dynamics do not appear to be related to AMPA or NMDA receptor expression as assessed with immunolabeling, as there is no correlation between spine motility and AMPA (GluR1/2) or NMDA (NR1/NR2B) receptor subunit expression on a spine by spine basis. These results indicate that activity through glutamatergic synapses is important for regulating spine motility in the developing mouse cortex, and that the relative complement of receptors, while different across morphological classifications, cannot account for differences in dynamic structural changes in dendritic spines.

PMID:
16120796
[PubMed - indexed for MEDLINE]
Free full text
PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for HighWire
    Loading ...
    Write to the Help Desk