Format

Send to:

Choose Destination
See comment in PubMed Commons below
J Cell Biol. 2005 Aug 29;170(5):825-36. Epub 2005 Aug 22.

CEACAM engagement by human pathogens enhances cell adhesion and counteracts bacteria-induced detachment of epithelial cells.

Author information

  • 1Zentrum für Infektionsforschung, Universität Würzburg, 97070 Würzburg, Germany.

Abstract

Exfoliation, which is the detachment of infected epithelial cells, is an innate defense mechanism to prevent bacterial colonization. Indeed, infection with Neisseria gonorrhoeae induced epithelial detachment from an extracellular matrix (ECM) substrate in vitro. Surprisingly, variants of N. gonorrhoeae that bind to human carcinoembryonic antigen-related cell adhesion molecules (CEACAMs) failed to induce detachment and, instead, promoted enhanced host cell adhesion to the ECM. Microarray analysis revealed that CEACAM engagement by several human pathogens triggers expression of CD105. Blockage of CD105 expression by antisense oligonucleotides abolished infection-induced cell adhesion. The expression of full-length CD105 promoted cell adhesion to the ECM and was sufficient to prevent infection-induced detachment. The CD105-mediated increase in cell adhesion was dependent on the presence and function of integrin beta1. CD105 expression did not elevate cellular integrin levels but caused a dramatic increase in the ECM-binding capacity of the cells, suggesting that CD105 affects integrin activity. The exploitation of CEACAMs to trigger CD105 expression and to counteract infection-induced cell detachment represents an intriguing adaptation of pathogens that are specialized to colonize the human mucosa.

PMID:
16115956
[PubMed - indexed for MEDLINE]
PMCID:
PMC2171332
Free PMC Article
PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for HighWire Icon for PubMed Central
    Loading ...
    Write to the Help Desk