Send to:

Choose Destination
See comment in PubMed Commons below
J Virol. 2005 Sep;79(17):10999-1013.

A capsid-modified helper-dependent adenovirus vector containing the beta-globin locus control region displays a nonrandom integration pattern and allows stable, erythroid-specific gene expression.

Author information

  • 1Division of Medical Genetics, University of Washington, Seattle, 98195, USA.


Gene therapy for hemoglobinopathies requires efficient gene transfer into hematopoietic stem cells and high-level erythroid-specific gene expression. Toward this goal, we constructed a helper-dependent adenovirus vector carrying the beta-globin locus control region (LCR) to drive green fluorescent protein (GFP) expression, whereby the LCR-GFP cassette is flanked by adeno-associated virus (AAV) inverted terminal repeats (Ad.LCR-beta-GFP). This vector possesses the adenovirus type 35 fiber knob that allows efficient infection of hematopoietic cells. Transduction and vector integration studies were performed in MO7e cells, a growth factor-dependent CD34(+) erythroleukemic cell line, and in cord blood-derived human CD34(+) cells. Stable transduction of MO7e cells with Ad.LCR-beta-GFP was more efficient and less subject to position effects and silencing than transduction with a vector that did not contain the beta-globin LCR. Analysis of integration sites indicated that Ad.LCR-beta-GFP integration in MO7e cells was not random but tethered to chromosome 11, specifically to the globin LCR. More than 10% of analyzed integration sites were within the chromosomal beta-globin LCR. None of the Ad.LCR-beta-GFP integrations occurred in exons. The integration pattern of a helper-dependent vector that contained X-chromosomal stuffer DNA was different from that of the beta-globin LCR-containing vector. Infection of primary CD34(+) cells with Ad.LCR-beta-GFP did not affect the clonogenic capacity of CD34(+) cells. Transduction of CD34(+) cells with Ad.LCR-beta-GFP resulted in vector integration and erythroid lineage-specific GFP expression.

[PubMed - indexed for MEDLINE]
Free PMC Article
PubMed Commons home

PubMed Commons

How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for HighWire Icon for PubMed Central
    Loading ...
    Write to the Help Desk