Display Settings:

Format

Send to:

Choose Destination
See comment in PubMed Commons below
Neuron. 2005 Aug 18;47(4):541-53.

Fast adaptation in vestibular hair cells requires myosin-1c activity.

Author information

  • 1Department of Neuroscience and Department of Otolaryngology, University of Virginia School of Medicine, Charlottesville, Virginia 22908, USA.

Abstract

In sensory hair cells of the inner ear, mechanical amplification of small stimuli requires fast adaptation, the rapid closing of mechanically activated transduction channels. In frog and mouse vestibular hair cells, we found that the rate of fast adaptation depends on both channel opening and stimulus size and that it is modeled well as a release of a mechanical element in series with the transduction apparatus. To determine whether myosin-1c molecules of the adaptation motor are responsible for the release, we introduced the Y61G mutation into the Myo1c locus and generated mice homozygous for this sensitized allele. Measuring transduction and adaptation in the presence of NMB-ADP, an allele-specific inhibitor, we found that the inhibitor not only blocked slow adaptation, as demonstrated previously in transgenic mice, but also inhibited fast adaptation. These results suggest that mechanical activity of myosin-1c is required for fast adaptation in vestibular hair cells.

PMID:
16102537
[PubMed - indexed for MEDLINE]
PMCID:
PMC2682556
Free PMC Article

Images from this publication.See all images (9)Free text

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9
PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for Elsevier Science Icon for PubMed Central
    Loading ...
    Write to the Help Desk