Format

Send to

Choose Destination
See comment in PubMed Commons below
J Pharmacol Exp Ther. 2005 Nov;315(2):959-64. Epub 2005 Aug 12.

Calcium-acting drugs modulate expression and development of chronic tolerance to nicotine-induced antinociception in mice.

Author information

  • 1Department of Pharmacology and Toxicology, Virginia Commonwealth University, Richmond, 23298-0613, USA. mdamaj@hsc.vcu.edu

Abstract

Initial studies in our laboratory suggested that tolerance to nicotine is thought to involve neuronal adaptation not only at the level of the drug-receptor interaction but at postreceptor events such as calcium-dependent second messengers. The present study was undertaken to investigate the hypothesis that L-type calcium channels and calcium-dependent calmodulin protein kinase II are involved in the development and expression of nicotine tolerance. To that end, the effects of modulation of L-type calcium channels (through the use of inhibitors or activators) as well as calcium-dependent calmodulin protein kinase II inactivation were studied in a mouse model of tolerance where mice were infused with nicotine in minipumps (24 mg/kg/day) for 14 days. In addition, the activity of calcium-dependent calmodulin protein kinase II in the lumbar spinal cord region obtained from nicotine-tolerant mice was measured. Our data showed that chronic administration of L-type calcium channel antagonists nimodipine (1 and 5 mg/kg) and verapamil (10 mg/kg) prevented the development of tolerance to nicotine-induced antinociception. In contrast, chronic exposure of BAYK8644 [(+/-)-1,4-dihydro-2,6-dimethyl-5-nitro-4-[2-(trifluoromethyl)-phenyl]-3-pyridine carboxylic acid methyl ester], a calcium channel activator, enhanced nicotine's tolerance. Moreover, a significant increase in both dependent and independent calcium-dependent calmodulin protein kinase II activity was seen in the spinal cord in nicotine-tolerant mice. Finally, spinal administration of 1-[N,O-bis(5-isoquinolinesulfonyl)-N-methyl-tyrosyl]-4-phenylpiperazine (KN-62), a calcium-dependent calmodulin protein kinase II antagonist, reduced the expression of tolerance to nicotine-induced antinociception in mice. In conclusion, our data indicate that calcium-dependent mechanisms such as L-type calcium channels and calcium-dependent calmodulin protein kinase II activation are involved in the expression and development of nicotine tolerance.

[PubMed - indexed for MEDLINE]
Free full text

Publication Types, MeSH Terms, Substances, Grant Support

PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for HighWire
    Loading ...
    Write to the Help Desk