Display Settings:

Format

Send to:

Choose Destination
See comment in PubMed Commons below
Cell Calcium. 2005 Aug;38(2):111-20.

Release and sequestration of Ca2+ by a caffeine- and ryanodine-sensitive store in a sub-population of human SH-SY5Y neuroblastoma cells.

Author information

  • 1Institute for Cell and Molecular Biosciences, The Medical School, University of Newcastle-upon-Tyne, UK.

Abstract

We have used single cell fluorescence imaging techniques to examine the role that ryanodine receptors play in the stimulus-induced Ca(2+) responses of SH-SY5Y cells. The muscarinic agonist methacholine (1mM) resulted in a Ca(2+) signal in 95% of all cells. Caffeine (30 mM) however stimulated a Ca(2+) signal in only 1-7% of N-type (neuroblastic) cells within any given field. The caffeine response was independent of extracellular Ca(2+), regenerative in nature, and abolished in a use-dependent fashion by ryanodine. In caffeine-responsive cells, the magnitude of the methacholine-induced Ca(2+) signal was inhibited by 75.07 +/- 5.51% by pretreatment with caffeine and ryanodine, suggesting that the caffeine-sensitive store may act as a Ca(2+) source after muscarinic stimulation. When these data were combined with equivalent data from non-caffeine-responsive cells, the degree of apparent inhibition was significantly reduced. In contrast, after store depletion by caffeine, the Ca(2+) signal induced by 55 mM K(+) was potentiated 2.5-fold in the presence of ryanodine, suggesting that the store may act a Ca(2+) sink after depolarisation. We conclude that a caffeine- and ryanodine-sensitive store can act as a Ca(2+) source and sink in SH-SY5Y cells, and that effects of the store can become obscured if data from caffeine-insensitive cells are not excluded.

PMID:
16095688
[PubMed - indexed for MEDLINE]
PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Icon for Elsevier Science
    Loading ...
    Write to the Help Desk