Format

Send to:

Choose Destination
See comment in PubMed Commons below
J Mol Biol. 2005 Sep 23;352(3):672-82.

Site-specific dimensions across a highly denatured protein; a single molecule study.

Author information

  • 1Department of Chemistry and Biochemistry, University of California, Santa Barbara, CA 93106, USA.

Abstract

Do highly denatured proteins adopt random coil configurations? Here, we address this question by measuring residue-to-residue separations across the denatured FynSH3 domain. Using single-molecule Forster resonance energy transfer techniques, we have collected transfer efficiency probability distributions for dye-labeled, denatured protein. Applying maximum likelihood analysis to the interpretation of these distributions, we have determined the through-space distance between five residue pairs in the protein's guanidine hydrochloride-unfolded and trifluoroethanol-unfolded states. We find that, while the dimensions of the guanidine hydrochloride -unfolded molecule generally coincide with the dimensions predicted for a random coil ensemble, potentially statistically significant deviations from random coil behavior are also evident. These small, site-specific deviations may provide a means of reconciling earlier, scattering-based evidence for the random coil nature of the unfolded state with more site-specific spectroscopic evidence suggesting residual structure. We have also studied the unfolded ensemble populated in 50% trifluoroethanol, a denaturant that induces a highly helical unfolded state. We find that the size and shape of the unfolded ensemble under these conditions is effectively indistinguishable from that populated in guanidinium hydrochloride solutions, suggesting that the gross structure of the denatured state is, perhaps surprisingly, independent of the chemistry of the cosolvent.

PMID:
16095607
[PubMed - indexed for MEDLINE]

LinkOut - more resources

Full Text Sources

Other Literature Sources

PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for Elsevier Science
    Loading ...
    Write to the Help Desk