Display Settings:

Format

Send to:

Choose Destination
See comment in PubMed Commons below
J Exp Med. 2005 Aug 15;202(4):493-503. Epub 2005 Aug 8.

Coexistence of multivalent and monovalent TCRs explains high sensitivity and wide range of response.

Author information

  • 1Centro de Biología Molecular Severo Ochoa, Consejo Superior de Investigaciones Científicas, Universidad Autónoma de Madrid, Madrid 28049, Spain. schamel@immunbio.mpg.de

Abstract

A long-standing paradox in the study of T cell antigen recognition is that of the high specificity-low affinity T cell receptor (TCR)-major histocompatibility complex peptide (MHCp) interaction. The existence of multivalent TCRs could resolve this paradox because they can simultaneously improve the avidity observed for monovalent interactions and allow for cooperative effects. We have studied the stoichiometry of the TCR by Blue Native-polyacrylamide gel electrophoresis and found that the TCR exists as a mixture of monovalent (alphabetagammaepsilondeltaepsilonzetazeta) and multivalent complexes with two or more ligand-binding TCRalpha/beta subunits. The coexistence of monovalent and multivalent complexes was confirmed by electron microscopy after label fracture of intact T cells, thus ruling out any possible artifact caused by detergent solubilization. We found that although only the multivalent complexes become phosphorylated at low antigen doses, both multivalent and monovalent TCRs are phosphorylated at higher doses. Thus, the multivalent TCRs could be responsible for sensing low concentrations of antigen, whereas the monovalent TCRs could be responsible for dose-response effects at high concentrations, conditions in which the multivalent TCRs are saturated. Thus, besides resolving TCR stoichiometry, these data can explain how T cells respond to a wide range of MHCp concentrations while maintaining high sensitivity.

PMID:
16087711
[PubMed - indexed for MEDLINE]
PMCID:
PMC2212847
Free PMC Article

Images from this publication.See all images (6)Free text

Figure 1.
Figure 2.
Figure 3.
Figure 4.
Figure 5.
Figure 6.
PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Icon for HighWire Icon for PubMed Central
    Loading ...
    Write to the Help Desk