Display Settings:

Format

Send to:

Choose Destination
We are sorry, but NCBI web applications do not support your browser and may not function properly. More information
Appl Environ Microbiol. 2005 Aug;71(8):4203-13.

Impact of plant species and site on rhizosphere-associated fungi antagonistic to Verticillium dahliae kleb.

Author information

  • 1University of Rostock, Fachbereich Biowissenschaften, Microbiology, D-18051 Rostock, Germany. gabriele.berg@uni-rostock.de

Abstract

Fungi with antagonistic activity toward plant pathogens play an essential role in plant growth and health. To analyze the effects of the plant species and the site on the abundance and composition of fungi with antagonistic activity toward Verticillium dahliae, fungi were isolated from oilseed rape and strawberry rhizosphere and bulk soil from three different locations in Germany over two growing seasons. A total of 4,320 microfungi screened for in vitro antagonism toward Verticillium resulted in 911 active isolates. This high proportion of fungi antagonistic toward the pathogen V. dahliae was found for bulk and rhizosphere soil at all sites. A plant- and site-dependent specificity of the composition of antagonistic morphotypes and their genotypic diversity was found. The strawberry rhizosphere was characterized by preferential occurrence of Penicillium and Paecilomyces isolates and low numbers of morphotypes (n = 31) and species (n = 13), while Monographella isolates were most frequently obtained from the rhizosphere of oilseed rape, for which higher numbers of morphotypes (n = 41) and species (n = 17) were found. Trichoderma strains displayed high diversity in all soils, but a high degree of plant specificity was shown by BOX-PCR fingerprints. The diversity of rhizosphere-associated antagonists was lower than that of antagonists in bulk soil, suggesting that some fungi were specifically enriched in each rhizosphere. A broad spectrum of new Verticillium antagonists was identified, and the implications of the data for biocontrol applications are discussed.

PMID:
16085804
[PubMed - indexed for MEDLINE]
PMCID:
PMC1183293
Free PMC Article

Images from this publication.See all images (4)Free text

FIG. 1.
FIG. 2.
FIG. 3.
FIG. 4.

Publication Types, MeSH Terms, Substances, Secondary Source ID

Publication Types

MeSH Terms

Substances

Secondary Source ID

PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for HighWire Icon for PubMed Central
    Loading ...
    Write to the Help Desk