Display Settings:

Format

Send to:

Choose Destination
Arch Biochem Biophys. 2005 Sep 1;441(1):56-63.

Purification and properties of cobalamin-independent methionine synthase from Candida albicans and Saccharomyces cerevisiae.

Author information

  • 1Institute of Cellular and Molecular Biology, Department of Chemistry and Biochemistry, University of Texas, Austin, TX 78712, USA.

Abstract

In this study, we investigated methionine synthase from Candida albicans (CaMET 6p) and Saccharomyces cerevisiae (ScMET 6p). We describe the cloning of CaMet 6 and ScMet 6, and the expression of both the enzymes in S. cerevisiae. CaMET 6p is able to complement the disruption of met 6 in S. cerevisiae. Following the purification of ScMET 6p and CaMET 6p, kinetic assays were performed to determine substrate specificity. The Michaelis constants for ScMET 6p with CH(3)-H(4)PteGlu(2), CH(3)-H(4)PteGlu(3), CH(3)-H(4)PteGlu(4), and l-homocysteine are 108, 84, 95, and 13 microM, respectively. The Michaelis constants for CaMET 6p with CH(3)-H(4)PteGlu(2), CH(3)-H(4)PteGlu(3), CH(3)-H(4)PteGlu(4), and l-homocysteine are 113, 129, 120, and 14 microM, respectively. Neither enzyme showed activity with CH(3)-H(4)PteGlu(1) as a substrate. We conclude that ScMET 6p and CaMET 6p require a minimum of two glutamates on the methyltetrahydrofolate substrate, similar to the bacterial metE homologs. The cloning, purification, and characterization of these enzymes lay the groundwork for inhibitor-design studies on the cobalamin-independent fungal methionine synthases.

PMID:
16083849
[PubMed - indexed for MEDLINE]
PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Icon for Elsevier Science
    Loading ...
    Write to the Help Desk