Display Settings:

Format

Send to:

Choose Destination
See comment in PubMed Commons below
Plant Physiol. 2005 Aug;138(4):2396-405. Epub 2005 Jul 29.

Nodulation phenotypes of gibberellin and brassinosteroid mutants of pea.

Author information

  • 1School of Plant Science, University of Tasmania, Hobart, Tasmania 7001, Australia.

Abstract

The initiation and development of legume nodules induced by compatible Rhizobium species requires a complex signal exchange involving both plant and bacterial compounds. Phytohormones have been implicated in this process, although in many cases direct evidence is lacking. Here, we characterize the root and nodulation phenotypes of various mutant lines of pea (Pisum sativum) that display alterations in their phytohormone levels and/or perception. Mutants possessing root systems deficient in gibberellins (GAs) or brassinosteroids (BRs) exhibited a reduction in nodule organogenesis. The question of whether these reductions represent direct or indirect effects of the hormone deficiency is addressed. For example, the application of GA to the roots of a GA-deficient mutant completely restored its number of nodules to that of the wild type. Grafting studies revealed that a wild-type shoot or root also restored the nodule number of a GA-deficient mutant. These findings suggest that GAs are required for nodulation. In contrast, the shoot controlled the number of nodules that formed in graft combinations of a BR-deficient mutant and its wild type. The root levels of auxin and GA were similar among these latter graft combinations. These results suggest that BRs influence a shoot mechanism that controls nodulation and that the root levels of auxin and GA are not part of this process. Interestingly, a strong correlation between nodule and lateral root numbers was observed in all lines assessed, consistent with a possible overlap in the early developmental pathways of the two organs.

PMID:
16055684
[PubMed - indexed for MEDLINE]
PMCID:
PMC1183425
Free PMC Article

Images from this publication.See all images (6)Free text

Figure 1.
Figure 2.
Figure 3.
Figure 4.
Figure 5.
Figure 6.
PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for HighWire Icon for PubMed Central
    Loading ...
    Write to the Help Desk